- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001200000000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Gao, R (2)
-
Hou, T (2)
-
Kingma, D (2)
-
Murphy, K (2)
-
Poole, B (2)
-
Salimans, T (2)
-
Wu, Y N (2)
-
Xiao, Z (2)
-
Xie, S (2)
-
Gao, R. (1)
-
Kingma, D. P. (1)
-
Poole, B. (1)
-
Song, Y. (1)
-
Wu, Y. N. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Xie, S; Xiao, Z; Kingma, D; Hou, T; Wu, Y N; Murphy, K; Salimans, T; Poole, B; Gao, R (, Advances in Neural Information Processing Systems (NeurIPS))Free, publicly-accessible full text available December 1, 2025
-
Gao, R.; Song, Y.; Poole, B.; Wu, Y. N.; Kingma, D. P. (, International Conference on Learning Representations (ICLR 2021))While energy-based models (EBMs) exhibit a number of desirable properties, training and sampling on high-dimensional datasets remains challenging. Inspired by recent progress on diffusion probabilistic models, we present a diffusion re- covery likelihood method to tractably learn and sample from a sequence of EBMs trained on increasingly noisy versions of a dataset. Each EBM is trained with recovery likelihood, which maximizes the conditional probability of the data at a certain noise level given their noisy versions at a higher noise level. Optimizing re- covery likelihood is more tractable than marginal likelihood, as sampling from the conditional distributions is much easier than sampling from the marginal distribu- tions. After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution and progressively samples the conditional distributions at decreasingly lower noise levels. Our method gener- ates high fidelity samples on various image datasets. On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs. Moreover, we demonstrate that unlike previous work on EBMs, our long-run MCMC samples from the conditional distributions do not diverge and still represent realistic images, allowing us to accurately estimate the normalized density of data even for high-dimensional datasets. Our implementation is avail- able at https://github.com/ruiqigao/recovery_likelihood.more » « less
An official website of the United States government

Full Text Available